Vätgassensor. Bild: Mia Halleröd Palmgren, Chalmers
Artikel från Chalmers tekniska högskola

Den här artikeln bygger på ett pressmeddelande. Läs om hur redaktionen jobbar.

Vätgas är en ren och förnybar energibärare, som kan driva bilar som bara släpper ut vatten. Problemet är att vätgasen är mycket brandfarlig när den blandas med luft. Därför krävs supereffektiva detektorer. Forskare från Chalmers har tagit fram den första vätgassensorn i världen som uppnår högt ställda framtida krav för att få användas i vätgasbilar.

Det forskarna arbetat fram är en optisk nanosensor som är inkapslad i ett plastmaterial. Sensorn bygger på ett optiskt fenomen – plasmoner – som uppstår när nanopartiklar av metall blir belysta och fångar upp ljus av en viss våglängd. Sensorn ändrar helt enkelt färg när mängden vätgas i omgivningen förändras.

Plasten runt den lilla sensorn är inte bara ett skydd, utan en nyckelkomponent. Den ökar sensorns hastighet och underlättar för vätgasmolekyler att passera in i metallpartiklarna där den detekteras. Samtidigt fungerar plasten som en effektiv barriär mot omgivningen eftersom inga andra molekyler släpps igenom. Det gör att sensorn kan arbeta både supereffektivt och ostört. Detta betyder också  att den klarar fordonsindustrins högt ställda framtida krav för tillämpning i vätgasbilar: att kunna detektera 0,1 procent väte i luft på mindre än en sekund.

Snabba och noggranna sensorer är avgörande i ett hållbart samhälle där vätgas är en energibärare. Vätgas produceras av vatten som spjälkas med hjälp av el från vindkraft eller solenergi. Sensorerna behövs både när vätgasen produceras och när den används, till exempel i bilar som drivs med en bränslecell. För att undvika att det bildas lättantändlig och explosiv knallgas när väte blandas med luft, behöver vätgassensorerna snabbt kunna upptäcka läckor. Bild: Yen Strandqvist, Chalmers

– Vi har inte bara tagit fram världens snabbaste vätgassensor, utan också en sensor som är stabil över tid och inte avaktiveras. Till skillnad från dagens vätgassensorer behöver den här inte kalibreras om lika ofta, eftersom den skyddas av plasten, säger Ferry Nugroho, forskare på institutionen på fysik på Chalmers.

Plasten gör sensorn snabbare

Under sin tid som doktorand insåg Ferry Nugroho och hans handledare Christoph Langhammer att de var något stort på spåren. De läste en vetenskaplig artikel om att ingen hade lyckats nå de framtida hastighetskrav som ställs på vätgassensorer för bilar. När de testade sin egen sensor insåg de att de bara var en sekund från målet – utan att ens ha försökt optimera den. Plasten gjorde jobbet bättre än de kunde ana. Ursprungligen var plasten främst tänkt som en barriär, men det visade sig att den även gör sensorn snabbare. Upptäckten ledde till en febril tid av både experimentellt och teoretiskt arbete på institutionen.

– I det läget fanns det inget stopp. Vi ville hitta den ultimata kombinationen av nanopartiklar och plast, förstå hur den fungerar och vad som gör den så snabb. Det hårda arbetet gav resultat. På bara några månader nådde vi rekordtiden samt den grundläggande teoretiska förståelsen för vad som orsakar den, säger Ferry Nugroho.

Världens snabbaste vätgassensor

  • Den chalmersutvecklade sensorn bygger på ett optiskt fenomen – plasmoner – som uppstår när nanopartiklar av metall blir belysta och fångar upp ljus av en viss våglängd.
  • Den optiska nanosensorn innehåller miljontals metallnanopartiklar av en palladium-guldlegering som ser till att vätgasen effektivt sugs upp som i en disktrasa. Denna effekt gör att sensorn ändrar färg när mängden vätgas i omgivningen förändras.
  • Plasten runt sensorn är inte bara ett skydd, utan ökar också sensorns hastighet genom att underlätta för vätgasmolekyler att tränga in i metallpartiklarna där de detekteras. Samtidigt fungerar plasten som en effektiv barriär mot omgivningen eftersom inga andra molekyler, som annars skulle avaktivera sensorn, släpps igenom
  • Sensorns effektivitet gör att den klarar fordonsindustrins högt ställda framtida krav för tillämpning i vätgasbilar: att kunna detektera 0,1 procent väte på mindre än en sekund.
  • Forskningen har finansierats av Stiftelsen för Strategisk Forskning inom ramen för projektet Plastic Plasmonics.
  • Resultaten har tagits fram i samarbete med Delfts tekniska universitet i Nederländerna, Danmarks tekniska universitet och Universitetet i Warszawa, Polen

Vätgas måste upptäckas mycket snabbt

Att detektera vätgas är utmanande på många sätt. Gasen är osynlig, luktfri, flyktig och extremt brandfarlig. Det krävs bara fyra procent väte i luften för det ska bildas knallgas som kan antändas vid minsta gnista. För att framtidens vätgasbilar och infrastrukturen kring dessa ska bli tillräckligt säker, måste man kunna detektera ytterst små mängder vätgas i luften. Sensorerna måste därför vara snabba så att läckor ska kunna åtgärdas innan det uppstår en brand.

– Det känns fantastiskt att kunna presentera en sensor som förhoppningsvis ska vara en del i vätgasbilens stora genombrott. Intresset som vi ser i bränslecellsbranschen är motiverande, säger Christoph Langhammer, biträdande professor på institutionen för fysik på Chalmers.

Även om siktet främst är inställt på att använda vätgas som energibärare, finns det också andra möjligheter som öppnas. Högeffektiva vätgassensorer efterfrågas inom elnätsbranschen och kemi- och kärnkraftsindustrin, men kan också bidra till att förbättra medicinsk diagnostik.

– Mängden vätgas i vår utandningsluft kan ge svar om till exempel inflammationer och födoämnesintoleranser. Vi hoppas att våra resultat ska kunna användas på bred front. Det här är så mycket mer än en vetenskaplig publikation, säger Christoph Langhammer.

På sikt är förhoppningen att sensorn ska kunna serietillverkas på ett effektivt sätt, till exempel med hjälp av 3D-printerteknik.

Artikel

Metal – Polymer Hybrid Nanomaterials for Plasmonic Ultrafast Detection, Ferry Nugroho, Iwan Darmadi, Lucy Cusinato, Anders Hellman, Vladimir P. Zhdanov och Christoph Langhammer, Nature Materials

Kontakt

Christoph Langhammer, biträdande professor, institutionen för fysik, Chalmers, clangham@chalmers.se, 031-772 33 31

Ferry Nugroho, forskare, institutionen för fysik, Chalmers, ferryn@chalmers.se, 031-772 54 21

Nyhetsbrev med aktuell forskning

Visste du att robotar som ser en i ögonen är lättare att snacka med? Missa ingen ny forskning, prenumerera på vårt nyhetsbrev!

Jag vill prenumerera