Artikel från Umeå universitet

Den här artikeln bygger på ett pressmeddelande. Läs om hur redaktionen jobbar.

För alla organismer är metaller livsnödvändiga. Patogena bakterier har utvecklat avancerade system för att kompensera för en eventuell låg koncentration av viktiga metaller i deras omgivande miljö, särskilt när de befinner sig i en värd. Nu har ett forskarteam upptäckt en mekanism som gula stafylokocker använder för att ta upp essentiella metaller, och som skulle kunna vara en potentiell måltavla för nya antibiotika.

Forskare vid Umeå universitet deltog i upptäckten av en ny mekanism i bakterien Staphylococcus aureus (gul stafylokock) som denna sjukdomsalstrande organism använder för upptagning av essentiella metaller. Upptäckten, som representerar ett nytt potentiellt läkemedelsmål för framtagning av antibiotika, gjordes tillsammans med kollegor vid universitet i Marseille, Pau, Saint Paul-lès-Durance och Paris, Frankrike, och publiceras i den ansedda tidskriften Science på fredag, 27 maj 2016.

För alla organismer är metaller livsnödvändiga. Patogena bakterier har utvecklat avancerade system för att kompensera för en eventuell låg koncentration av viktiga metaller i deras omgivande miljö, särskilt när de befinner sig i en värd. När det gäller upptagning av järn är det särskilt väl dokumenterat att vissa bakterier, med hjälp av speciella molekyler, så kallade sideroforer, kan samla järn från det omgivande mediet.

stapylopine
Ett exportsystem transporterar staphylopin ut ur cellen, där det sedan kan fånga in metaller från det extracellulära mediet. Staphylopin/metall-komplexet kan sedan upptas av cellen via ett särskilt importsystem

Nu har forskare vid The Laboratory for Molecular Infection Medicine Sweden (MIMS) och institutionen för molekylärbiologi i Umeå, tillsammans med franska kollegor, identifierat en ny metallfångande molekyl som bildas av bakterien Staphylococcus aureus och döpt den till staphylopin.

Forskarna identifierade de viktiga aktörerna som möjliggör att Stafylokock-bakterien kan uppta ett brett spektrum av viktiga metaller som nickel, zink, kobolt, koppar och järn från sin omgivande miljö (se bild). Tre enzymer, vars funktioner hittills var okända, möjliggör produktionen av staphylopin genom en kombination av tre byggstenar (D-histidin, amino butyrat och pyruvat).

Ett exportsystem transporterar staphylopin ut ur cellen, där det sedan kan fånga in metaller från det extracellulära mediet. Staphylopin/metall-komplexet kan sedan upptas av cellen via ett särskilt importsystem. Det var sedan tidigare känt att bakterier som saknade dessa import/exportsystem hade minskad sjukdomsframkallande förmåga, men orsakerna bakom fenomenet var inte helt klarlagda.

Gemensamt evolutionärt ursprung
– Intressant nog upptäckte vi för några år sedan att många olika taxonomiskt obesläktade bakterier kan frigöra höga koncentrationer av ett stort antal D-aminosyror till miljön. Vi misstänker att D-histidin är en av många D-aminosyror som skulle kunna fungera som byggstenar för nya staphylopin-liknande molekyler, förklarade Felipe Cava från MIMS/Umeå universitet.

Upptäckten av staphylopin – hur den är byggd och hur den transporteras av dessa system – kan nu öppna vägen för utvecklingen av en ny strategi mot patogena bakterier, genom att ändra deras beroende av metaller.

En överraskning är att staphylopin liknar nikotinamin, en molekyl som finns i alla växter och som säkerställer transporten av viktiga metaller från rötterna, där de samlas in åt de olika antennorganen. Upptäckten att det finns en likartad metalltransportör i de tre stora livsdomänerna (arkéer, eukaryoter och nu bakterier) tyder på att molekylen har ett gemensamt evolutionärt ursprung.

Kontakt: Felipe Cava, PhD, gruppledare, The Laboratory for Molecular Infection Medicine Sweden (MIMS). Institutionen för molekylärbiologi, Umeå universitet. Telefon: 090-785 6755. E-post: felipe.cava@umu.se, CavaLab

Artikeln i Science: Ghssein, G. *, Brutesco, C. *, Ouerdane, L. *, Fojcik C, Izaute, A., Wang, S., Hajjar, C., Lobinski, R., Lemaire, D., Richaud, P ., Voulhoux, R., Espaillat, A., Cava, F., Pignol, D., Borezée-Durant, E. & Arnoux, P. (2016). Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science. DOI: 10.1126/science.aaf1018 (* Bidrog i samma omfattning till publikationen.)

Deltagande forskningsinstitut i Frankrike:

Nyhetsbrev med aktuell forskning

Visste du att robotar som ser en i ögonen är lättare att snacka med? Missa ingen ny forskning, prenumerera på vårt nyhetsbrev!

Jag vill prenumerera